

 Standards
Title Objective DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

 summary

The term system may mean a
hardware/software system,

for which the standard covers
only the software portion or a
software system for which this

standard governs overall
development. (1.2.4.1)

The standard covers
the processes for

acquiring, supplying,
developing and

maintaining a software
or a system including

software.

The standard
sets out

guidelines to
facilitate the

application of
ISO 9001 to

Organisations
designing,
developing,
supplying,

installing and
maintaining

software.

Scope of the
Standard

Interpretation
of system

and software

The
interpretation

of these terms
varies with the

standards.

The standard covers only
the software development

portion of an airborne
system development.

Part I governs general development of a
system comprised of electrical and/or

electronic components. Part 3 covers the
software development of this system.

Use of terms: acquirer, contract, developer...

Data flow
from system
to software
processes

Software
Requirements

are derived
from system

safety
requirements

within the
safety

assessment
process.

System safety requirements
are inputs to the software

life cycle e.g.: criticality,
software level, safety
strategies and design

constraints (2.1.1)

The specification of the requirements for
software safety shall be derived from the

specified safety requirements of the E/E/PE
safety-related system and any requirements

of safety planning. (7 .2.2.2)

Data flow
from

software to
system

processes

The software
Design

implementation
shall be traced
to the system

safety

Data includes: fault
containment boundaries,

software requirements, error
sources detected or

eliminated through software
architecture. (2.1.2)

Software safety requirements shall be
expressed and structured such that they are

traceable back to the specification of the
safety requirements of the E/E/PE safety-

related system. (7 .2.2.6.b)

The developer shall define
and record the traceability

between the CSCI (software
configuration item)

requirements and system
requirements. (5.5)

System life cycle
Processes and

software life cycle
processes shall be

consistent. (1.2)

The standard
does not

address the
data flow
between
software

process and
system

process.

System aspect relating to software development

Definition of

To define the
System
criticality

categories, the
software

levels, their
relationship

and the way to
derive one

from the other.

The failure condition
category of a system is

established by determining
the severity of the failure

effect (functional capability ,
material and human
consequences). This

categorisation is qualitative.
(2.2.1) The software levels
are linked to the previous

categories: they are based
upon the contribution of

software to failure
conditions. Each software

level corresponds to a
failure condition category.

(2.2.2) The standard
provides a guidance on
software level definition.

(2.2.3)

The system safety assessment process
identifies hazards and risks (consequences

of hazard . frequency of occurrence),
identifies the need for risk reduction (7.4 in
part I), specifies safety functions for each

hazard in order to reduce risk (7.5 in part I)
and allocates each safety function to the
hardware and software (7.6 in part I). A

safety integrity (probability) is defined and
allocated to each functions. The safety
integrity may be defined qualitatively or
quantitatively. Two types of probability

pertaining to different modes of operation
(low demand and high demand modes) are

presented. (7.6.2.5 in part I). Then each
failure probability corresponds to a level
which is the safety integrity level of the

function. (7.6.2.9 in part I). The software
safety integrity level is directly derived from
the safety integrity level. Requirements in
the case of software functions of different
safety integrity levels are given. (7 .4.2.8)

The case of non-safety functions is
specified (7.2.2.10 and 7.4.2.7)

The developer shall identify
as safety-critical those

software whose failure could
lead to a hazardous system
state. For such software, the

developer shall develop a
safety assurance strategy,
including both tests and

analysis, to assure that life
cycle procedures minimise or

eliminate the potential for
hazardous conditions. The

strategy shall include a
software safety program and

be recorded in the
development plan. Evidence
shall be produced, that the

strategy has been carried out.
(4.2.4.1)

This international
standard does not

address safety.

This
International

standard does
not address

safety.

Svstern aspect relating to software development
 Standards

Title ObjectIve
Summary

DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Relation
Between
system

architecture
and software

levels

The aim of
Architectural

strategies is to
limit the impact
of errors and to

detect them

Subsection 2.3 (and 2.2.3) provides
a guidance on several architectural

strategies: partitioning, multiple
version dissimilar software and

safety monitoring

Standard states the need for necessary
risk reduction (7.5 in part I) including

system architecture. No guidance is given
on how to reduce risk and how system
architecture could be used to decrease

the risk.

The standard does not
address safety.

The standard does
not address safety

.

The standard
does not
address

safety

System
Considerations

for specific
software

architecture
characteristics

Guidance on: user-modifiable,

option- selectable, cots and field-
selectable software (2.4 and 2.5)

Interaction
Between

software life
cycle and
system

verification.

This interaction
should be taken

into account.

System verification is not covered
but system verification may provide
a significant coverage of the code

structure. (2.7)

Software l ife cvcle

 Standards

Title Objective
summary DO 178b IEC61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

General Requirements for
the software life cycle(s)

A life cycle.
composed of
separated but

interacting
processes,
should be
specified.

For each software a life
cycle should be elaborated
but neither a preferred type

oflife cycle nor a
organisational structure is

required (section 3)

A safety lifecycle for the
development shall be selected and
specified during safety planning.

(7.1.2.1). A lifecycle model different
from the model of this standard can
be elaborated provided that all the
objectives and requirements are

met. (7.1.2.5) The standard
provides the same requirements for
the overall lifecycle (7.1.4.1 in part

I).

The acquirer is responsible
for tailoring the standard i.e.

specifying a subset of the
requirements of the standard

and then specifying a life
cycle. (1.2.3)

The developer shall specify a
life

cycle model. (5.3.1.1) This
standard can be tailored

(removal
ofprocesses) by the acquirer

(Annex A). It does not
prescribe a

specific life cycle model (1.5).
If

possible, each process shall
be

improved (7 .3)

Software life cycle
processes

To list life
Cycle

processes

The life cycle processes
are:

- planning,
- development

(requirements, design.
coding, integration) and

- integral processes
(verification, configuration

management quality
assurance, certification

liaison) (3.1)

The lifecycle phases are:
- requirements specification.
. design and development,

- integration,
- validation. (clause 7)

Quality and safety assurance
procedures shall be integrated into

lifecycle activities. (7.1.2.2)
Software development planning is
covered by part 1 and is included in

the system safety planning.

The life cycle, called software
development process in the

standard, includes:
- project planning.

- requirements analysis
-, design,

- implementation,
- integration,

- qualification
- - integral processes.

(4.1) Risk management
shall be performed.

(5.19.1)

Life cycle processes include: -
development (including

requirements, design. coding.
tests, integration). . integral

processes (including
configuration management.

quality assurance,
verification) (5.3). The life

cycle shall be managed as
specified in the management

process (7.1)

A software
development project
should be organised

according to an
agreed life-cycle
model. Quality-
related activities

should be planned
and implemented
with respect to the
nature of the life-

cycle model used.
This part of ISO

9000 is intended for
application

irrespective of the
life-cycle model

used. .Any
description.
guidance,

requirement or
structure of this

international
Standard is not

intended to indicate
a specific life- cycle

model. (5.1)

Life cycle Process
definition

The activities
of each

process. Their
chronology

and the
responsibilitie

s for them
should be
specified..

The life cycle activities
should be specified. The
sequencing of processes

depends on the project and
processes may be iterative.

Example of life cycle of
software are given

including: previously
developed software,

partitioned function and
prototyping (subsection 3.2)

Each phase shall be divided into
elementary tasks with a well

defined input, output and activity
for each task. (7.1.2.3)

The life cycle activities may
overlap. may be applied
iteratively or differently to

different software elements
and need not be performed in

a specific order. (4.1)

The activities and tasks of the
development process shall be
selected. These activities and
tasks may overlap or interact

and may be performed
iteratively or recursively.

(5.3.1.1)

A life cycle mode will
identify a number of
processes and may

specify the
sequence in which

these processes are
performed. (5.1)

Software life cycle
 Standards

Title Objective
Summary

DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Transition
criteria

Between
processes

Transition
Criteria should
be established.
These criteria

are used to
decide to re-

enter a
process or to
initiate a new

one

Criteria depend on planning and
software level. Examples are given.

Feedback from other processes
and partial inputs are considered.

(3.3)

The standard does not allow the
specification of transition criteria.

Items that shall be checked
during the verification of each

lifecycle phase are specified in
7.9.2.6 (The transition criteria
are: the verification result is

positive). If a modification in an
earlier safety lifecycle phase is

required, then that phase and the
following phases shall be

repeated. (7.16.2 in part I and
7.1.2.8)

The standard does not specify
the use of transition criteria.

The standard does not
specify the use of
transition criteria.

The standard
does not specify

the use of
transition criteria.

Life cycle
data

Data produced
during the

software life
cycle should
be defined.

Data is produced during the life
cycle phase to plan, direct, explain,
define record, or provide evidence

of activities. Data should be
unambiguous, complete, verifiable,

consistent, modifiable and
traceable.

No specific form is required by the
Standard but data form should
provide for the efficient retrieval

and review of data throughout the
service life. Data can be placed in
one or two categories related to the
configuration management control
placed on the data.: CCI and CC2.
CC I requires more configuration
Management control of the data

than CC2. The minimum category
assigned to each data item, and its

variation by software level, is
specified in Annex A. No particular

data packaging method or
Organisation is required. (section II
) Data produced during life cycle is

: Planning data (see software
planning process), software

requirement standards, software
design standards, software code
standards, software requirements
data, design description, source

code, executable object code,
software Verification cases and
procedures, Software verification

results, software life cycle
environment configuration index,

software configuration index,
problem reports, software

configuration management records,
software quality assurance records,

software accomplishment
summary.

The results of carrying out the
lifecycle activities shall be
documented. (7.1.2.7) The

documentation shall contain
sufficient information necessary
for effective performance of each

phase of the lifecycle and of
each, planning, verification and
functional safety assessment

activity (5.1 in part I). Data shall
be accurate, concise,

understandable, consistent with
the purpose, accessible and

maintainable (5.2.6 in part I). All
relevant documents shall be
revised, amended, reviewed,
approved and be under the

control of an appropriate
document control scheme (5.2.11
in part I). The standard provides

form and structure
requirements.(clause 5 in part I)
Data produced during life cycle
are: planning data (see safety

planning), software safety
requirements specification,

software safety validation plan,
software design description,
software test specification,

coding standards, source code
listing, code review report,

software test results, software
safety validation

results, software modification
impact analysis results,

modification log, verification
report, software functional safety

assessment report, software
configuration management data.

The developer shall establish,
control and maintain a

software development library
and software development
files for the duration of the
contract. (5.2.3 and 5.2.4)
Form and content of each

required document are
thoroughly specified in the

Data Item Description (DID).
Data item are: software

development plan (SDP),
software test plan (STP),
software Installation plan

(SIP), software transition plan
(STrP), operational concept

description (OCD),
system/subsystem

specification (SSS), interface
requirements

specification (IRS), system,
subsystem design description

(SSDD), interface design
description (IDD), software
requirements specification

(SRS), software design
description (SDD), database
design description (DBDD),

software test description
(STD), software test report

(STR), software product
specification (SPS), software

version description (SVD),
software user manual (SUM),
software input/output manual

(SIOM), software centre
operator manual (SCOM),

computer operational manual
(COM), computer

programming manual (CPM),
firmware support manual

(FSM).

This international
standard is not

intended to prescribe
the name, format, or

explicit content
of the documentation

to be produced.
Moreover the standard

does not imply that
documents be
developed or

packaged separately
or combined in some

fashion. (1.5)
Life cycle products

(data) shall be
identified in a plan.

Each identified
document shall be

designed in
accordance with

applicable
documentation

standards. Automated
documentation tools
may be used. (6.1)

Each process shall be
documented. The

documentation shall
be reviewed (

completeness,
consistency,...). (6.4.2.

7)

The supplier
should establish

and maintain
documented

procedures to
control all

documents and
data. (6.2.1) The
documents and

data shall be
reviewed and
approved for
adequacy by
authorised

personnel prior to
issue. (6.2.3)
Changes to

document and
data shall be
reviewed and

approved by the
same

organisations.
(6.2.4)

Independenc
e of those
performing
the life cycle

activities

The
Independence

of
those

performing the
life cycle

activities shall

The independence of those
performing the life cycle activities is

graded against software level.
Tables in annex (see tables A.I to

A.I 0) specify whether each
objective should be satisfied with

independence or not.

The standard only specifies the
Independence of those

performing the functional safety
assessment (FSA). The minimum
level of independence of those
performing the FSA is graded
against the software integrity

level

The standard does not
address the independence of
those performing the life cycle

activities.

The standard specifies
that those performing

the verification,
validation and quality

assurance
activities may be

independent.

The standard
does not address
the independence

of those
performing the life

cycle activities.

Software planning process

 Standards

Title Objective
summary

DO 178b IEC61508 MIL-STD-498 ISO/IEC 12207 ISO 9000.3

General
requirements

for the
planning
process

Specification
of plans and
standards

that direct the
development

and the
integral

processes

To define the means of
producing software which will

satisfy the system requirements
and provide confidence which is
consistent with airworthiness

requirements. To specify all the
characteristics of the life cycle

(its environment and its
standards) and to make up

plans (4.1) Plans and standards
to be produced, and the
independence of those

performing the planning process
are graded against software

level (table A.I in annex A)

Planning
process
activities

To define the
planning

activities, to
precise their
timing and

the means of
executing

them

Requirements for the planning
activities are given. Strategies
for error prevention and plan
reviews should be integrated

into these activities. Each
characteristic of the

development process should be
taken into account (4.2)

To define the management and
technical activities during the

lifecycle and to define the
responsibilities for each phase

or for activities within each
phase. (6.1 part 1)

Planning is an intrinsic
part of the

development process,
to be performed

regardless of whether
a deliverable is
required. The

developer shall
develop and record

plans. This planning
shall be consistent
with system- level
planning. (5.1.1)

The planning process
shall be carried out as

specified in the
management process (7

.1.2)

The supplier should define
and document how the

requirements for quality will
be met.:(4.2.3.) The supplier
should give consideration to

the following activities:
-the preparation of quality

plans
- the identification and

acquisition of the
development

environment, test tools,
simulation or emulation

facilities, techniques,
resources and skills..
- - ensuring the

compatibility of the
processes .the updating
of verification, validation
and testing techniques

-the identification of suitable
verification -the identification

and preparation of quality
records.

Plans

5 plans should be made up,
define the transition criteria and
take account of a possible plan
change due to feedback. Plans
to be produced are : . plan for

software aspects of certification
. software development plan .

software verification plan
- software configuration

management plan – software
quality assurance plan (4.3)

This process is termed the
safety planning (management

of functional safety in part 1
and software quality

management system in part 3).
(subclause 6.2 of parts 1 and 3)
The functional safety planning
shall define the strategy for the

software procurement,
development, integration,
verification, validation and
modification to the extent

required by the SIL. (6.2.2)

The planning shall
include all applicable
items in the software

development plan.
Separate plans for

quality assurance and
configuration

management may be
developed (5.1.1). The

plan provides the
acquirer insight into,

and a tool for
monitoring, methods,
activities, schedules,

organisation and
resources. (SDP 3.2)

Plans shall be subject
to acquirer approval.

(5.1.6)

The supplier should
develop and document

the project management
plan(s). This plan should

specify all overall
responsibilities,

environments, activities,
Standards, tools...

(5.2.4.5) The developer
should establish

development plans. The
plans specify standards,
methods, tools, activities

and responsibilities.
(5.3.1.4) After coding the
developer shall establish

an integration plan.
(5.3.8.1) Separate plans
for safety requirements
management can be

established. (5.2.4.5.e)

Several plans should be
established: quality (4.2.3.I.a

and 5.5), development
(5.4.2), configuration

management, integration and
tests plan (5.4.2.i).

. the plan
for software

aspect of
certification

It is used by
the

certification
authority for
determining
whether the
proposed

software life
cycle

complies with
the software

level.

It should include a system and
software overview, a summary
of certification basis (including
software level), a summary of
life cycle processes and data,

the schedule and other
additional considerations. (11.1)

During the safety planning, the
Following should be

considered: -policy, strategy,
responsibilities and means -
lifecycle phases to be applied

-documentation structure
-information extent

.measures and techniques
-procedures for ensuring staff

competence
-requirements for periodic

functional

Interface with
independent

verification and
validation agents shall

be planned (SDP
10.2.5.19.5).

The standard does not
require that the developer

establish a plan for
software aspects of

certification.

This standard does not
require a plan for software

aspects of certification.
However a quality plan should

be established, reviewed,
agreed and updated. It should
specify all quality objectives,

defined input and output
criteria, responsibilities and

planning. (5.5)

Software planning process
 Standards

MIL-STD-498 ISO/IEC 12207 ISO 9000-3 Title Objective
summary DO 178b 1EC 61508

- the
software

developme
nt plan

It should specify
everything that
concems the
development
Processes.

It may be included in the previous
plan. It should include the

development standards and
environment, and details for the life

cycle implementation. (11.2)

-procedures for ensuring
prompt follow-up and

satisfactory resolution of
recommendations arising
from the different lifecycle

phases
- modification procedures

throughout lifecycle -
modification procedures for
validated software (7 .8.2.6)

-procedures for
configuration management

Thorough form
requirements (SDP
10.1) and thorough

content requirements
are provided about:

processes (including
a short imprecise
Instruction about

safety assurance),
standards,

environment,
reviews, schedule .

(SDP 10.2)

The development
(engineering) planning
shall be specified in the

development plans.

The development plan
should define how the

project is to be managed,
including the nature and
frequency of reports to

management taking into
account any contractual
requirements. Progress
reviews should ensure
effective execution of

development plans (5.4.1).
Subclause 5.4.2 specifies

what the development
plan covers.

- the
software

configurati
on

manageme
nt plan

It should
establish the

methods to be
used to achieve
the objectives of

the software
Configuration
management

process
throughout the

life cycle.

The plan should include :
- the description of the configuration

management environment
(procedures, methods, tools...)

the activities (configuration
identification, baseline and
traceability, problem reporting,
change control, change review,
configuration status accounting,
archive, retrieval and release,
software load control, software life
cycle environment controls, software
life cycle data controls)

- - transition criteria
- software configuration management

data
- supplier control (11.4)

(corrective action to be
taken shall be addressed by

the software verification
planning 7 .9.2.2.e) -

procedures for analysing
operations and

maintenance performance -
procedures for analysing,

minimising and
documenting potential

hazards.

The configuration
management

planning is specified
in the software

development plan.
(SDP 10.2.5.14)

The configuration
management plan shall

describe activities,
procedures and

responsibilities. (6.2.1.1)

The configuration
management planning is

specified in the
development plan (see

5.4.2.h and 5.4.2.i)).

- the
software

quality
assurance

plan

It should
establish the

methods to be
used to achieve
the objectives of

the software
quality assurance

process.

It may include a description of
process improvement, metrics and

progressive management methods. It
should include the quality assurance
environment (scope, organisational

responsibilities and interfaces,
standards, procedures, tools and

methods), activities, transition
criteria, timing and records definition.

(II .5)

The plan for functional
safety assessment shall
specify: -responsibilities,
competence and level of

independence -resources
and outputs

-scope and safety bodies
involved (8.2.8 in part I)

Quality assurance
planning is specified

in the software
development plan.

(SDP 10.2.5.16)

The supplier shall
develop, document and

update a quality
assurance plan

(5.2.4.5.g). The plan
shall encompass
activities, quality

standards, contract
reviews, methodology,

procedures, data
schedule, responsibilities

and tools.
(6.3.1.3)

This standard does not
explicitly require a quality
assurance plan, but the
supplier shall establish

and maintain documented
procedures for planning
intemal quality audits.

(4.3)

- the
software

It should describe
the verification
procedures to

satisfy the
verification
processes
objectives.

It should include the organisation, the
independence methods, the
verification environment, the

verification methods and transition
criteria of the verification processes,
and considerations for Establishing
independence and for specific cases
(partitioning, previously developed

and multiple-version dissimilar
software). (11.3)

The verification shall be
planned concurrently with
the development, for each
lifecycle phase and this

information shall be
documented. This planning

shall refer to the criteria,
techniques, tools to be used
in the verification process.
(7 .9.2.1 and 7.9.2.2) There

is a specific chapter for
safety validation planning.
Safety validation covers the
system-Level verification of

the compliance of the
system with safety
requirements. (7.3)

Test planning shall
Include all applicable
items in the software
test plan. (DID STP)
Reviews are planned
in the development

plan (SDP 10.2.5.18)

The supplier shall
develop and document a
plan for the verification

and validation
(5.2.4.5.h). The tests
shall be planned and

documented concurrently
with the development, for

each related life cycle
phase. Test planning is

specified in the
integration plan. (5.3.8.1)

A verification (review)
plan (6.4.1.5) and a

validation plan (6.5.1.4)
shall be established and

include: life cycle
activities to be verified,

resources,
responsibilities and

Test planning is specified
in the development plan.
(see 5.4.2.e and 5.4.2.i

and 5.7.5.1) The
verification activities

should be planned and
conducted in accordance
with The quality plan or

documented procedures
to ensure that design

outputs meet the design
input requirements.

(5.7.2.1)

Software plannlng process
 Standards

Title Objective
summary

DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Review and
assurance of
the planning

process

To ensure that
the plans and

standards comply
with all

requirements and
that means are

provided to
execute them

The review and assurance of the
planning process shall ensure that :
- methods are compliant with the

objectives -life cycle processes can
be applied consistently - each

process produces evidence that its
outputs can be traced to their

activity and inputs (subsection 4.6)

The requirements developed
from the safety planning shall

be formally reviewed by the
organisations concerned, and
agreement reached. (6.2.3 in

part I)

The standard does not
specify such reviews.
Updates to plans shall
be subject to acquirer

approval. (5.1.6)

Planning requirements,
selected life cycle processes,

standards, procedure,
environments, resources and
competence shall be verified

(6.4.2.2).

This international
standard only
addresses the

development plan.
The development

plan should be
reviewed and

approved before
execution. (5.4.1

and 6.5)

.SDP is an acronym that means Software Development Plan.
This plan is described in the Data Item Descriptions (DID).

The paragraph 3.2 refers to the DID section describing the SDP.

Life cycle environment
 Standards

Title Objective
summary DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Life cycle
environment

planning

The methods,
tools,

procedures,
programming

languages and
hardware used
to develop and
verify should
be defined.

To choose an environment with the aim
of improving error detection, prevention
and tolerance.(4.4) Considerations apply
to the methods, notations, programming

languages, method used for coding,
software development environment tools

and software verification and
configuration management tools. DO
178B does not require the use of any

specific method or technique. Methods,
rules, constraints and tools shall be
specified in terms of Development

Standards. (See Software development
standards)

A suitable set of integrated tools,
including languages, compilers,
configuration management tools,
and, when applicable automatic
testing tools, shall be selected for
the required SIL. (7 .4.4.2) The

standard requires/recommends
the use of specific techniques

and measures for each lifecycle
phase commensurate with the
SIL (see tables Ai to AiO and 81

to 89). Selecting Techniques
from annexes A and 8 does not

guarantee by itself that the
required safety integrity will be

achieved. (7. i .2.6)

This standard is not
intended to specify or
discourage the use of
any particular software
development method.

The developer is
responsible for selecting
methods. (foreword 5)

The developer shall use
systematic, documented
methods for all software
development activities.
These methods shall be

described in, or
referenced from, the

software development
plan. (4.2. i)

The life cycle
environment

planning shall be
specified in the

development plans.
See also the
Infrastructure

process (7.2.2.i)
This international
standard does not

prescribe a specific
software

development
method (i.5). The
developer shall

choose, tailor and
use standards,

methods, tools and
programming

languages that are
documented and

appropriate
(5.3.i.3).

The supplier should
give consideration to
the identification of
the development
environment; test

tools, simulation or
emulation facilities,

techniques, resources
and skills that may be

needed to achieve
the required quality.

(4.2.3.2) Whether
these tools and
techniques are

developed internally,
or purchased, the
supplier should

validate them. (6.6)

Developmen
t

environment

To establish
the

development
environment.

Qualified tools to minimise the risk to the
final software should be chosen. A

verification process and standards in
agreement with the software level should

be developed. An error introduced by
one part of the environment should be

detected by another part. Specific cases
are analysed: tools in combination and
optional features of software tools. (4.4.i)

The design method chosen shall
possess specific features.

(7.4.2.2 and 7.4.2.4)

To establish, control
and maintain an

engineering
environment in

compliance with the
functions to perform.

(5.2.i)

The engineering
environment is
specified in the

development plans.

See above

Language
and compiler
consideratio

n

To take into
account the

choice of
compiler and

language in the
software

planning and
verification
activities.

The standard highlights the need to
carefully consider the language and

compiler which may impair the
traceability between the source code

and the object code. Planning process
should provide means to ensure

verification coverage and define the
means in the appropriate plan. The

Planning process should consider the
particular features and changes of the
programming language and compiler

(4.4.2)

A suitable set of integrated tools,
including languages and

compilers shall be selected. (7
.4.4.2) Requirements for the
programming language are

provided (7 .4.4.3).

The standard does not
provide a specific

guidance for languages
and compilers.

The standard does
not provide a

specific guidance
for languages and

compilers.

Tools used in the
design and

development, such as
CASE tools,
compilers,

assemblers, etc.
should be qualified,
and placed under

configuration control.
Where practical,

qualification should
take place prior to

use. (5.6.4)

Test
environment

Qualified tools,
methods,

procedures and
hardware to

test the outputs
of the

integration
process should

be chosen.

Certification may be given for testing
done using an emulator or a simulator.

Emulator and simulator should be
qualified as defined in i2.2. In case of

differences between the target computer
and the emulator or the simulator, the
ability to detect potential errors should
be considered and detection of those

errors should be provided by other
software verification process activities.

(4.4.3 and i2.2) The test should be
performed in the integrated

A suitable set of integrated tools,
including when applicable

automatic testing tools, shall be
selected (7.4.4.2). Suitable tools
are issued from tables in annex
A. Methods such as probabilistic

testing, dynamic analysis and
testing, data recording and

analysis, functional and black
box testing, performance testing,

interface testing, formal proof,
static analysis, software

complexity metrics are required
for software testing for higher

To establish, control
and maintain a test

environment to perform
qualification and

possibly other testing.
(5.2.2)

Methods,
techniques and

tools necessary to
the verification

process shall be
chosen (6.4.1.4)

A guidance on what
should be considered

in establishing the
test environment is

provided
insubclause5.7.5.i.

target computer, since errors are

only detected
in it. (6.4.1)

safety integrity level.
The

required/recommended
use of

methods is indexed
against the

software integrity level
(SIL).

Software development standards
 Standards

Title Objective
summary DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Developmen
t standards

Rules and
constraints for

the development
process and its

consistency
should be

specified in terms
of development

standards.

These standards define the
methods, rules and tools to be
used to develop the high-Level
requirements (requirements

standards; 11.6), the software
architecture and low-Level

requirements (design standards;
11.7) and to code the software

(code standards; 11.8). They are in
compliance with the safety-related
requirements and are a basis for

the verification process. (4.5)

Coding standards shall be
specified and reviewed by the

assessor. (7 .4.4.5)
Requirements for the

specification of the coding
standards are provided. (7
.4.4.6) Methods, techniques
and tools concerning other

processes are not specified in
terms of standards (See Life
cycle environment planning).

The developer shall
develop and apply

standards for
representing

requirements, design,
code, test cases, test
procedures and test

results. These
standards shall be

described, or
referenced from, the

software development
plan. (4.2.2)

The development
standards shall
be specified in

the development
plans. The

adequacy of a
standard shall be
evaluated prior to

each process
using it.

This international standard
does not require explicit

standards but rules, practices
and conventions should be

specified in the development
plan (5.4.2.h and 6.5). ISO

900-3 addresses elsewhere
Design rules (5.6.3.a) and

programming rules,
languages and

conventions (5.6.4).

Software development processes
 Standards

Title Objective
summary DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

General
requirement

s

Development
activities

(requirements,
design, coding
and integration)
are applied in

compliance with
the planning

process

The standard identifies the notion
of requirements (high level
requirements issued from

specification, low level
requirements issued from design,
derived (non directly traceable to

specification or design)). The
document requires that standards

are set and are followed.
Traceability shall be ensured at all

stages. Post certification
modifications are not

allowed.(section 5) The
development activities and the

independence of those performing
them are graded against software

level (see table A.2 in annex I).

All development activities are
performed with respect to the
required safety integrity level.

The standard does not
provide general

requirements. See the
following objectives.

This international
standard describes the

architecture of the
software life cycle

processes but does
not specify the details
of how to implement or
perform the activities
and tasks included in
the processes. (1.5)

It is imperative that
the design and
implementation

activities are carried
out in a disciplined
manner, in order to
produce a product
according to the

specification rather
than depending on

the test and
validation activities
for assurance of

quality (5.6.1).

Software
requirement
s process

From the outputs
of the system life

cycle, this
process develops

the software
requirements

data.

Objectives are:
 - high-Level requirements are

developed (functional,
performance, interface and safety-

related)
-derived high-Level requirements
are indicated to the system safety
assessment process. Software
requirements data are produced

(5.1 and 11.9)

Subclause 7.2 Requirements are
specified in terms of the

requirements for software safety
functions and the requirements for
software safety integrity. (7.2.1.1)

The requirements must be
specified in sufficient detail to allow

the Development, the functional
safety assessment and the

achievement of safety integrity.
(7.2.2.3) Outputs shall be precise,
verifiable and traceable back to the

system requirements. (7 .2.2.6)

The developer shall
define and record the

software requirements
to be met by each
configuration item

(CSCI), the methods to
be used to ensure that
the requirements have

been met and the
traceability between the
CSCI requirements and

the system
requirements. (5.5)
Requirements are

specified in DID SRS
(Software Requirements

Specification).

The developer shall
establish and

document the software
requirements (5.3.4.1).
The outputs shall be

traceable back to
system, consistent

with System
requirements,

verifiable (5.3.4.2).

The supplier should
develop the

requirements
specification in close
co-operation with the
customer and obtain
its approval. (5.3.1)

The interfaces
should be specified

in the customer's
Requirements

specification. The
requirements should

be expressed in
terms which allow
validation during

product acceptance.
(5.3.2)

Software development processes
 Standards

Title Objective
summary

DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Software
design
process

The software
architecture
should be

defined and low-
level

requirements
developed.

The objectives are:
- software architecture and low-level
requirements are derived from high-

level requirements
- derived low-level requirements are

provided to the system safety
assessment process (5.2)

There is a guidance for designing for
user- modifiable software. (5.2.3)
Design data shall be produced.

(11.10)

General requirements on design
method and design

implementation are given. (7.4.2)
As far as practicable the design

shall minimise the safety-related
part of the software. (7 .4.2.6) The
software architecture (7.4.3) shall
be created and fulfil the software

safety requirements with respect to
the required SIL. The software

shall be
designed and implemented and be
analysable, verifiable and capable
of being safely modified (7 .4.5).

The process includes:
CSCI (software

configuration item) -
wide design decisions,

CSCI architectural
design, CSCI detailed

design. See
requirements in DID

SDD (Software Design
Description).

The developer shall
establish and document

the software
architectural (high-level)

design (5.3.5). The
developer should

establish and document
a detailed design of
each software item
(5.3.6). The outputs
should be traceable

back to requirements,
consistent with software
requirements, verifiable.

The standard
provides a

guidance on
design (5.6.3) and
addresses the use

of past
experiences. The
design outputs

should be defined
and documented
in accordance with

the chosen
methodology

(5.6.5).

Coding
process

From the
software

architecture and
low-level

requirements, the
source code and
the object code

shall be
developed.

Objective is : Source code is
developed that is traceable,

verifiable, consistent and correctly
implements low level requirements.

(5.3) Outputs of the process are
source code (11.11) and object code.

To develop detailed code that
fulfils software safety requirements

with respect to the required SIL,
which is readable, modifiable,

understandable and testable. (7
.4.6)

Software
implementation shall

include coding
computer instructions
and data definitions,

building and populating
databases

corresponding to each
software unit. (5.7.1)

The developer shall
code each software unit
and database (5.3.7.1).
The outputs should be

traceable back to
design and

requirements,
consistent with software

design. (5.3.7.5)

Integration
process

Executable
object code is

generated from
the source code
and loaded into

the target
hardware. The

integration
consists of
software

integration and
system

integration.

Objective of the integration process
is : The executable object code is
loaded into the target hardware for
hardware/software integration. The

integration consists of software
integration and hardware/software

integration. (5.4) Considerations for
deactivated code and software

patches are given. Evidence should
be available that a deactivated code

is disabled for the environments
where its use is not intended.
Patches are shall not be used
without re-certification of the

software. (5.4.3)

Software integration process is
implicitly discussed in subclause 7
.4.8 (Requirements for software

integration testing). System
integration consists of integrating

the software onto the target
programmable electronic hardware

(7.5.1.1).

To perform unit
integration until all

software in each CSCI
is integrated. (5.8) To
integrate CSCls with
interfacing Hardware
Configuration Items
(HWCls) and CSCls
until all CSCls and

HWCls in the system
are integrated. (5.10)

The developer shall
plan (5.3.8.1) and then
perform unit integration

(5.3.8.2). Software
configuration items shall

be integrated Into the
system (5.3.10.1). The

outputs should be
traceable back to

system requirements,
consistent with system
requirements (5.3.8.5).

The standard
provides a

guidance on
implementation
(set of activities

which transfer the
specified

requirements to
executable object

code). (5.6.4)

Traceability

There should be
a traceability

Between system
specification,
high- and low-
level software

requirements and
source code.

Traceability is systematically
required. It is also explicitly specified
and summarised in subsection 5.5 .

Traceability is implicitly required.
Software safety requirements shall

be traceable back to the
specification of the safety

requirements of the E/E/PE
system (7 .2.2.6.b).

Traceability is
systematically required

(also in DID).
Compliance with these
requirements provides a
traceability from system

requirements to
software unit and to

each test.

Traceability is
systematically required.

Traceability is not
addressed by the

standard.

Software
support

The process
includes

maintenance, aid
to users and

related activities.

Maintenance is not covered by the
standard.

Maintenance shall be planned (7.
7 in part I) Chronological

documentation of operation, repair
and maintenance shall be

maintained (7.15.2.3 in part I)

The developer shall
prepare user manuals
and provide assistance

as specified in the
contract (5.12) He shall
provide information to

the support

The developer shall
prepare and update

user manuals.
(specified in each life

cycle phase)

Maintenance is
addressed in

subclause 5.10.

Software verificatlon process
 Standards

Title Objective summary DO 178b IEC61508 MIL-STD.498 ISO/IEC 12207 ISO 9000-3

General
requirement

s

Technical assessment of
the results of both the
software development

and verification
processes with the aim

of detecting and
reporting errors and with

some level of
Independence.

To detect and report errors that may
have been introduced during the

software development processes (6.1).
Verification is not simply testing and
includes a combination of reviews,

analyses, development of test cases and
procedures, execution of those test

procedures (6.2).
The verification activities and the

independence of those performing them
are graded against software level. (See

tables A.3 through A.7 in annex A)

To test and evaluate the
outputs from a given

lifecycle phase to ensure
correctness and

consistency, to the extent
required by safety integrity

level. (7.9.1)

The standard does
not provide general
requirements. See

the following
objectives.

The verification and
validation process
can be performed
by an independent
agent as specified
in the contract. The

relationship with
this agent is

managed by the
supplier (5.2.5.5)

The supplier should
plan and implement
verification, validation
and test activities for

all software
developments (5.7.1).

The verification
results should be

recorded and
checked when the

actions are
completed. (5.7.6)

Activities

Combination of reviews,
analysis, development of
test cases and execution
of test procedures. The
verification process is

performed as planned in
the verification plan.

To assess accuracy, completeness and
verifiability of the software requirements,

architecture and source code (see
reviews and analysis), and then to test
the compliance with the requirements
(see testing process). (subsection 6.2)
Guidance on outputs is provided. (11.13

& 11.14)

To document evidence to
show that each phase has

been satisfactorily
completed (7.9.2.4). The

following should be verified
(see reviews and analysis):

software safety
requirements (7 .9.2.8),

architecture (7.9.2.9),
design (system 7.9.2.10 and

module 7.9.2.11), code
(7.9.2.12), data (7.9.2.13).

The following testing
activities (see testing

process) should be verified:
module testing, integration
testing, hardware-software

integration testing and
safety requirements testing

(see validation).

The developer shall
perform evaluations

(see reviews and
analysis). The

processes to be
evaluated and

criteria to be used
are given in

appendix D. (5.15.1)
The developer shall

test the following
(see testing

process):
-units (5.7.2),

-unit integration
(5.8.1)

-hardware/software
integration (5.10.1)
The developer shall

also perform a
software- and
system- level

qualification (see
validation).

Verification
activities may

include reviews,
analysis and tests.

(6.4) The
verification process
may be performed
by an independent
organisation. The
verification effort
shall be justified

(criticality) and the
level of

independence of
those performing

the process shall be
specified. (6.4.1.1)
Life cycle activities
to be verified shall

be assessed.
(6.4.1.4)

Design verification is
required to be
performed at

appropriate points in
the design process

(but also at other
stages in the

development process,
5.7.1). It may

comprise formal
documented reviews

of design output,
demonstrations or

tests. (5.7.2.1)

Verification process: reviews and analysis
 Standards

Title Objective summary DO 178b IEC61508 MIL-STD-498 ISO/IEC l2207 ISO 9000-3

General
requiremen

ts

Analysis provide a
repeatable evidence of
correctness, reviews
provide a qualitative

assessment of
correctness.

Subsection 6.3
provides requirements

for the reviews and
analysis of high level

requirements, low level
requirements, software
architecture, software

code. Outputs are
recorded in the

software verification
results. The reviews
and analysis, and the
independence of those
performing them are

graded against
software level. (See

tables A.3 through A.5
in annex A)

The verifications (reviews)
to be performed are

specified in subclause
7.9.2.7 . The outputs to be

verified are: safety
requirements, architecture,

System design, module
design and code. The data
used by software shall also

be reviewed.

System criticality should be
analysed to ensure that
reviews are necessary.

(6.4.1.I)The persons
responsible for this

(verification) process shall
have independence and

authority. (6.4.1.3) Detected
non-compliance shall be
provided to the problem

resolution process. (6.4.1.6)
All reviews aim at ensuring

that outputs comply with
safety ,

security and criticality
requirements.

Review and
analysis of
high-level

requirement
s

To ensure that high-level
requirements comply

with the system
requirements.

The process shall
verify that these

requirements are
consistent, accurate,
verifiable, traceable
and compatible with
the target computer.

They shall comply with
the requirements
standards. (6.3.1)

This process, termed the
safety requirements

verification, shall check
consistency and control the
validation plan. (7 .9.2.8).

The developer shall review
the requirements to ensure

that they are adequately
defined (7 .2.2.4 and
7.4.1.2) and resolve

disagreements over safety
integrity level. (7.2.2.5).

Review and
analysis of
low-level

requirement
s

To ensure that low-level
requirements comply

with the high-level
requirements.

The process shall
verify that these

requirements are
consistent, accurate,
verifiable, traceable
and compatible with
the target computer.

They shall comply with
the design standards.

(6.3.2)

The process, termed the
system design verification,
shall verify that the design is

consistent with the
requirements and further

development, verification or
modification. (7.4.1.5 and

7.9.2.10)

The requirements verification
process shall verify that

outputs
are consistent, verifiable and
traceable back to system. The

process also verify that
system

requirements are correctly
allocated. (6.4.2.3)

Review and
analysis of
software

architecture

To ensure that software
architecture complies

with the high-level
requirements.

The process shall
verify that architecture
is consistent, verifiable
and compatible with

the target computer. It
shall comply with the

The process shall verify that
the architecture is
consistent with the

requirements and further
development, verification or

modification. The

The developer shall perform
software product evaluation:
in-process evaluations and
final product evaluation. The
processes to be reviewed
and criteria to be used are

given in appendix D. (5.15.1)

The developer shall prepare
and maintain records of each

evaluation. (5.15.2) The
persons responsible for

evaluating shall be
independent. (5.15.3)

The design verification
process shall verify that

outputs are correct,
consistent, verifiable and

traceable back to
system.(6.4.2.4)

Most design reviews
are scheduled for

particular stages of
the development,
but may Also be

unscheduled and
triggered by a

particular problem.
The standard

provides a guidance
on what a review
procedure should

address. Records of
all such reviews

should be
maintained.

(5.7.2.2)

 shall comply with the
design

standards.(6.3.3)
Guidance on

partitioning integrity

modification. The
verification shall control the
specification of architecture
integration tests. (7 .9.2.9)

 system.(6.4.2.4)

Verification process: reviews and analysis
 Standards

Title Objective summary DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Review and
analysis of

source code

To ensure that source
code complies with the
low-Level requirements

and the software
architecture.

The process shall
verify that the source

code is verifiable,
traceable and

consistent. It shall
comply with the code

standards. (6.3.4)

The process, termed the
module design verification,
shall verify that the module
design is consistent with the
system design specification

and further development,
verification or modification

(7.9.2.1 i). The code
verification shall ensure

conformance to the module
design and the coding

standards. The source code
shall be verified by static

methods. (7.9.2.i2)

The code verification process
shall verify that outputs are

complete, Correct, consistent,
verifiable and traceable back
to system, and comply with
requirements and coding

standards. (6.4.2.5)

Review and
analysis of
integration

process

To ensure that the
integration process

results are complete and
correct.

Objective may be
performed by a

detailed examination
of the linking and
loading data and

memory map. (6.3.5)

The integration verification
process shall verify that

software items have been
correctly and completely

integrated in accordance with
the integration plan (6.4.2.6).

See the previous
table.

Review and
analysis of

the test
cases,

Procedures
and results

To ensure that code
testing was developed

and performed
accurately and

completely.

Test cases, test
procedures and test

results shall be
reviewed. (6.3.6)

The process is performed
concurrently with the other

reviews and analysis.

The standard does not
require reviews of test cases,

procedures and results.

Review and
analysis of

the data
used by
software

To verify completeness,
consistency,

correctness, protection
of data used by the

software (internal data,
application data,

modifiable parameters).

DO 178B does not
address specifically

the data of the
software. Guidance is

given on user
modifiable software

(2.4, 5.2.3)

Data structures and
application data shall be
verified. Interfaces and

associated software shall be
verified. All modifiable

parameters shall be verified
for protection against
unexpected changes.

(7.9.2.i3)

See the previous table.

The standard does not
require reviews and analysis
of the data used by software.

Improvemen
t process

Reviews and analysis
shall be performed with

the aim of improving
each process.

This document does
not specifically

address improvement
process.

This document does not
specifically address

improvement process.

The developer shall
periodically assess the

processes used on the project
to determine their suitability

and effectiveness, and
identify any necessary and

beneficial improvements. (5. i
9. 7)

Each process shall be
evaluated and reviewed to

identify where improvements
are needed. (7.3)

The verification
results should be

recorded and
checked when the

actions are
completed. (5.7.6)

Joint review

The acquirer and the
developer shall carry out
reviews to assess the

status and the products
of a life cycle phase.

This document does
not specifically

address joint reviews.

This document does not
specifically address joint

reviews.

The developer shall plan and
take part in joint

(acquirer/developer) technical
and management reviews

(5.18)

Joint reviews shall analyse
both management (6.6.2) and

techniques (6.6.3). The
guidance on joint reviews is

quite detailed.

Regular joint reviews
should be

scheduled. (5.7.3)

Verification: Testing process
 Standards

Title Objective
summary

DO 178b 1EC 61508 MIL.STD-498 ISO/IEC 12207 ISO 9000-3

System
validation

To
demonstrate

that the
integrated

system
conforms to

the
requirements
specification at
the intended

software level.

System-level testing is not
covered by the standard. It is

covered in ARP 4754

The standard requires
system- level tests, anyhow if

the compliance with the
requirements for software
safety has already been

established as part of the
E/E/PE safety-related system,
then the validation need not

be repeated. The results shall
be documented.(7 . 7)

Validation shall be performed
during actual operation.

Qualification testing aims
at demonstrating the

acquirer that the
requirements have been

met. The persons
responsible for

qualification
testing shall be

independent. The process
shall include testing on

the target computer. Two
testing levels are
required: CSCI

qualification (5.9) and
system qualification

(5.11).

The validation effort shall be
justified and the level of
independence of those

performing the validation shall
be specified

(6.5.1.1). Test cases shall be
selected(6.5.2.2) and tests

shall be performed (6.5.2.3).

Before offering the
product for delivery

and customer
acceptance, the
supplier should

validate the operation
of the product in

accordance with its
specified intended

use, when Possible
under conditions

similar to the
application

environment. (5.7.4)

Test
coverage
analysis

Test coverage
analysis shall
be performed.

The standard requires two test
coverages:

-requirements-based test
coverage analysis (to determine
how well the testing verified the
implementation of the software

requirements)
-structural coverage analysis (to
determine how well the testing

verified the code structure). They
accomplish traceability between

the implementation of the
software requirements and their
verification. (6.4.4.1 and 6.4.4.2).
Case of the highest software level
(6.4.4.2) and of unexecuted code

(6.4.4.3).

Coverage analysis is implicitiy
required by the

recommended use of testing
methods such as the

structure-based testing
method (see tables A.5, A.9

and B.2 in annex).

The test cases shall cover
all aspects of the design.
No coverage analysis is

required.

Coverage analysis shall be
carried out after each testing

phase with the aim of ensuring
that each compliance with

requirements has been tested.

The standard does not
explicitly address

Coverage analysis.

Audits

Audits shall be
performed to

verify the
compliance

with
requirements,

plans and
contract.

Quality assurance audits shall be
carried out. (see quality

assurance process)

Quality assurance and
configuration management
audits shall be carried out.
(see quality assurance and
configuration management

processes)

Quality assurance audits
and acquirer-conducted

configuration audits shall
be carried out. (see
quality assurance

process and configuration
management)

Audits shall be carried out with
Independence as planned.
Audits shall ensure that the

coded software complies with
the design, that testing

processes are performed
accurately and completely,

that the documentation
complies with standards, that

processes comply with
requirements, and that cost
and schedule are respected.

(6.7) See also quality
assurance process.

Quality assurance
audits shall be carried

out. (see quality
assurance process)

Verification: Testing process
 Standards

Title Objective
summary

DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Test case
selection

To establish
test cases.

Test cases should be based
primarily on the software

requirements. Two categories of
requirements-based test cases
are specified: normal range test
for normal inputs and conditions,

and robustness test cases for
abnormal inputs and conditions.
Guidance for both categories is

given. (6.4.2) The testing
activities and the independence

of those performing them are
graded against software level.

(See tables A.6 and A.7 in annex
A)

Test cases should be established
to ensure testing of the software
requirements. Tests to be applied
during the three testing phases

shall be specified:
-module testing (7 .4.5.4),

-integration testing
(7.4.5.5,7.4.8.1 , 7.4.8.2) and
-programmable electronics
integration testing (7.5.2.1 to

7.5..2.4, 7.4.3.2.!) Methods such
as probabilistic testing, dynamic

analysis and testing, data
recording and analysis, functional

and black box testing,
performance testing, interface

testing, formal proof, static
analysis, software complexity

metrics are required for software
testing for higher safety integrity

level. The
required/recommended use of
methods is indexed against the
software integrity level (SIL). (see

tables in annex A and B)

The developer shall
establish test cases (in

terms of inputs,
expected results and
evaluation Criteria),

procedures and data
for testing:

 -units (5.7.2),
 -unit integration in

CSCls (5.8.1)
 -HWCI/CSCI

integration (5.10.1)
HWCI: hardware

configur. Item CSCI:
computer soft. conI

Item

The developer shall establish and
document test cases and

procedures for testing: -units
(5.3.7.I.b) -unit integration

(software qualification) (5.3.8.4) -
software/hardware integration

(system qualification) (5.3.10.2)

The standard
gives a guidance

on what should be
considered in

establishing the
test specifications

activities:
-test objective;
-types of tests

-test cases, data,
results, criteria...

The standard
specifies some
phases that may

be tested:
-software item test

-integration test
-system test

-acceptance test
(5.7.5.1)

Testing
Phases

To execute the
three testing

phases:
-module
testing,

-software
integration
testing and

-
hardware/soft

ware
integration

testing.

The requirements-based testing
methods are:

-hardware/software integration
testing

-software integration testing
-low-Level testing.

The hardware/software
integration testing requires a

specific environment or strategy.
(6.4.3) Testing the executable

object code is not required for the
lowest software level (see table

A.6 in annex A).

The three successive testing
phases

are:
-software module testing (7.4. 7)
-software integration testing (7

.4.8)
-programmable electronics
integration testing (7.5.2).

The results shall be documented
(see Data recording and analysis

in table A.5 annex A).

Several phases: unit
testing (5.7.3-5.7 .5),

integration testing
(5.8.2- 5.8.4),
CSCI/HWCI

integration testing
(5.10.2-5.10.4) The

developer shall record
test and analysis

results in appropriate
Software Development

Files (SDF).

The developer shall test:
-each unit and each database

(5.3.7.2)
-unit integration (software

qualification testing) (5.3.9)
-software/hardware integration

(system qualification testing
(5.3.11). Test results shall be
documented and reviewed for
conformity to expected results.
Qualification testing concludes

with successful audits followed by
the establishment of a baseline

for design and code.

The standard
provides a

guidance on what
should be

considered when
the supplier

carries out testing.
(5.7.5.2) The

standard
addresses field
testing (5.7.5.3).

Software configuratlon management process
 Standards

Title Objective summary DO 178b IEC 61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

General
requirement

s

To define and control
software

configuration,
manage

configuration
changes, control

process inputs and
outputs, establish
baselines and aid

the verification

Software configuration
management (SCM) is applied
in agreement with the planning

process and the software
configuration management plan
(7 and 7.1). The SCM process

includes the activities of
configuration identification,
change control, baseline

establishment, and archiving of
the software product, including
the related software life cycle
data. The SCM process does
not stop when the product is
accepted by the certification

authority but continues
throughout the service life. (7

.2) The depth of the SCM
control (CCI or CC2) placed on

the data is specified In
subsection 7.3. The

configuration management
activities and the independence
of those performing them are
graded against software level

(See table A.8 in annex A).

Software configuration
management (SCM)

should apply
administrative and
technical controls

throughout the software
safety lifecycle, in order

to manage software
changes and thus

ensure that the specified
requirements for

software safety continue
to be satisfied. (6.2.3.a)

5.14 The developer shall
support acquirer-conducted

configuration audits as
specified in the contract.

(5.14.2)

The configuration
management

process is a process
for applying

administrative and
technical procedures

throughout the
software life cycle

(6.2). The
configuration shall

be reviewed
(configuration

evaluation, 6.2.5.1
and documentation
verification. 6.4.2. 7)

Configuration
management is a

management discipline
that applies technical and
administrative direction to

the development and
support life cycle of

software configuration
items. It is also applicable
to related documentation.

The CM process
comprises: -configuration

identification
-configuration control
-configuration status

accounting
-configuration auditing
The level ofCM can be
tailored to each project.

(6.1.1) Only verified
development outputs

should be submitted to
CM and accepted for

subsequent use (5.7.6).
Tools should be placed

under configuration
control prior to use. (6.6)

Configuratio
n

Identification

To label
unambiguously each

configuration Item
and its successive
versions so that a

basis is established
for the control and

reference of
configuration items.

Configuration identification
should be done for life cycle

data and for each configuration
item. Configuration identification
should be done before the use

of configuration items and
before implementation of

change control and traceability
data recording. (7.2.1)

Configuration item
include at least safety

analysis and
requirements,

specification and design
documents, source code
modules, test plans and

results, all tools and
environments. (6.2.3.c)

The developer shall identify the
entities to be placed under
configuration control. These

entities shall include the
software products to be

developed or used under the
contract and the elements of

the software development
environment. (5.14.1)

Each software item
shall be identified

(6.2.2.1).

The CM process
comprises configuration

identification (6.1.1.).

Baselines
and

Traceability

To define a basis for
further software life

cycle activity and
allow reference to,

control of. and
traceability between
configuration items.

Baselines should be established
for items used for certification
credit (7.2.2) A baseline for the

software product should be
established and defined in an
index (11.16). Baseline should

be protected from change.

To establish
configuration baselines
at appropriate points in
the development and to

guarantee the
composition of. and the
building of all baselines.

(6.2.3.d)

The standard does not provide
specific guidance on baselines.

Software items shall
be identified in a
baseline. (6.2)

The standard does not
provide specific guidance

on baselines.

Problem
reporting,

tracking and
corrective

action

To record and
resolve process non-
compliance with plan

and standards.
deficiencies of

outputs and
anomalous
behaviour of

products.

Problem resolution should be
ensured in establishing reports.

Problem reports that require
corrective action of the software
product or outputs of software
life cycle processes should
invoke the change control

activity. (7.2.3) Guidance on
reports is given (11.17)

After each verification,
the verification

documentation should
include non-

conformance. (7.9.2.5)

After each testing phase (5. 7.4,
5.8.3.5.9.6.5.10.3 and 5.11.6),

the developer shall make
necessary revisions to the
software, participate in all
necessary retesting, and

update the appropriate software
development files (SDFs).

A problem resolution
process shall be
performed and

reviewed. It ensures
that all identified

problems and non-
compliance are

analysed and quickly
resolved. and

enables to
understand problem

The supplier shall
establish and maintain

documented procedures
for tracking and recording

problems and
implementing corrective
and preventive action.

(4.4 and 5.7 .5.2.c)

Software configuration management process
 Standards

Title Objective summary DO 178b lEC61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Change
control

Recording,
evaluation,

resolution and
approval of changes
throughout the life

cycle.

Configuration items and baselines
are protected against changes. There

should be a traceability between
changes and their origin. Throughout
the change activity , data affected by
the change should be updated and
records should be maintained. (7

.2.4)

To apply change control
procedures, to document
modification procedures

(6.2.3.d) Modification
procedures (request, impact

analysis, authorisation,
documentation) are specified
in subclause 7.16.2 (part I).

Change
review

To ensure that
changes are

assessed, approved
or disapproved and
to control feedback

Confirmation that affected
configuration items are configuration

identified. Feedback about safety-
related changes is provided to the

system safety assessment process.
(7 .2.5)

To analyse the impact of
modification, to approve or
reject the request (6.2.3.d)

The developer shall
perform corrective

action by preparing a
problem/change report
and implementing a

corrective action
system for handling

each detected
problem. Each

problem shall be
classified by category
and priority (with the
help of Appendix C).
(5.17) Configuration
control procedures
establish Levels of

control, persons with
authority to make

changes, the steps to
be Followed to

process change
requests,(5.14.2).

The change control
procedures include an

analysis and an
evaluation of changes,

a verification and an
audit. Traceability of

each change shall be
ensured. An audit shall

be
performed to control
changes of software
items implementing

safety- critical
functions. (6.2.3.1)

Areas impacted by any
modifications should

be identified and
retested (5.7.5.2.d)

Where a software item
manifests a

nonconformity during
the development

process, the
investigation and
resolution of such

nonconformities should
be controlled and
recorded.(6.1.3)

Analysis of the root
causes of non-

conformities may
provide input to
corrective and

preventive action.
(6.1.3)

Configuratio
n status

accounting

To provide the
status and history of
configuration items.

The objective of the status
accounting activity is to provide data
for the configuration management

with respect to configuration
identification, baselines, problem

reports, and change control (7.2.6).

To document information to
permit a subsequent audit

(configuration status, release
status...). (6.2.3.e)

Configuration status
accounting is required
in subclause 5.14.3 .

Configuration status
accounting is required
in subclause 6.2.4.1 .

The CM process
comprises

configuration status
accounting (6.1.1).

Archive,
retrieval and

release

To process life cycle
data so that they

could be retrieved
and duplicated

without errors and
their integrity could

be ensured. To
control that only

authorised software
is used.

Archive and retrieval activities aim at
ensuring that the life cycle data

associated with the software product
can be retrieved in case of a need to

duplicate, regenerate, retest or
modify the software product. Release

activities aim at ensuring that only
authorised software is used. (7.2. 7)

To document the software
release to permit
maintenance and

modification throughout the
operational lifetime. (6.2.3.f)

The standard does not
provide specific

guidance on archives.

Original code and
documentation shall be
maintained. Software
and documentation

release shall be
controlled. (6.2.6.1)

The supplier should
establish and maintain

documented
procedures for

replicating, delivering
and installing the
software items or

products. (5.9)

Software
load control

To ensure that the
executable object

code is loaded into
the

system with
appropriate
safeguards.

Procedures for part numbering and
media identification shall be

implemented Records should be kept
that confirm software compatibility

with the airbome system or hardware
(7 .2.8) Considerations about field-

loadable software are provided. (2.5)

The standard addresses
installation (7.13 of part I).

The standard does not
provide specific

guidance on load
control.

The standard does not
provide specific

guidance on load
control. However the

developer shall
establish an installation

plan and load the
software product as

specified in this plan.
(5.3.12)

The standard
addresses installation

(5.9.5).

Software life
Cycle

Environment
control

To ensure that the
tools used to

produce (develop,
control, build, verify

and load) the
software are

identified, controlled
and retrievable.

Configuration identification should be
established for the executable object

code of the tools used to develop,
control, build, verify and load the

software. Control Categories CCI and
CC2 apply to the Qualified tools. At
least CC2 is applied to the other

tools. (7 .2.9)

The guidance on
configuration management
does not include specific
requirements for life cycle

environment control.

The guidance on
configuration

management does not
include specific

requirements for life
cycle environment

control.

The guidance on
configuration

management does not
include specific

requirements for life
cycle environment

control.

The guidance on
configuration

management does not
include specific

requirements for life
cycle environment

control.

Software quality/safety assurance process
 Standards

Title Objective summary DO 178b IEC 61508 (. in part I) MIL-STD-498 ISO/IEC 12207 ISO 9000-3

General
requirements

To provide confidence that the
software life cycle processes

produce software that conforms
to its requirements by assuring

that these processes are
performed in compliance with
the approved software plans

and standards. The process is
applied as defined by the

software quality assurance
plan.

Objectives of SQA is to
obtain assurance that :
 - Software development
processes and integral
processes comply with

approved plans and
standards.

- Transition criteria are
satisfied

- A conformity review of
the software is

conducted (8.1) The
SQA activities and the

independence of those
performing them are

graded against software
level (see table A.9)

The objective of the
functional safety

assessment (FSA) is to
investigate and arrive at a

judgement on the
functional safety achieved

by the E/E/PE safety-
related systems. (8.1 .)

The FSA shall be applied
to all phases throughout

the lifecycle (8.2.3
.) and may be carried out
after each phase or after

a number of phases (8.2.4
.). The minimum level of
independence of those
carrying out the FSA is

specified in tables 4 and 5
(clause 8 .).

Software quality
assurance evaluations
shall assure that each

activity is being
Performed in

accordance with the
contract and the plan

and that each
Required product

exists and has
undergone

evaluations, testing
and corrective action.

(5.16.1)

The quality
assurance process
should ensure that

the processes
(6.3.3), the products

and the
documentation

(6.3.2) comply with
requirements and

plans.

The supplier shall establish
and maintain documented

procedures for implementing
internal audits to verify

whether quality activities
comply with planned
Arrangements and to

determine the effectiveness
of the quality system. (4.3)

The supplier shall establish
and maintain documented

procedures for identification,
collection, indexing, access,
filing, storage, maintenance

and disposition of quality
records. (6.3.1) The standard
addresses measurements of

the quality. (6.4)

Activities
To perform audits and carry out

all quality assurance
procedures.

To provide assurance,
with authority and

independence, that
plans and standards are

developed and
reviewed, that life cycle

processes and products
comply with all plans

and standards by means
of audits. (8.2)

Those carrying out the
FSA shall have access to

all persons involved in
any lifecycle activity (8.2.2

.).
They shall consider the
activities carried out and

the outputs obtained
during each phase and

judge the extent to which
the objectives and

Requirements in this
standard have been met

(8.2.3 .). They also
consider the extent to

which changes pertaining
to previous

recommendations of the
FSA have been made

(8.2.6 .). At the conclusion
of the FSA,

recommendations shall be
produced (8.2.10 .).

The developer shall
conduct on-going

evaluations of
software Development

activities and the
resulting products.

(5.16.1) The developer
shall prepare and

maintain (for the life of
the contract) records

of each quality
assurance activity .
(5.16.2) Persons

responsible for this
process shall have

independence,
resources,

organisational freedom
and authority to permit
objective evaluations

and to initiate and
verify corrective
actions. (5.16.3)

The results of other
integral processes

(verification,
validation, joint

reviews or audits)
can be used. Co-

ordination with these
processes should be
ensured. Detected
non- Compliance
with requirements

should be processed
(problem resolution
process). Persons
responsible for this
process shall have

independence,
resources and
authority (6.3.1)

Internal quality audits shall
be scheduled on the basis of
the status and importance of
the activity to be audited and

shall be carried out by
personnel independent. The
results of the audits shall be
recorded. Follow- up audits

activities shall verify and
record the implementation

and effectiveness of the
corrective action taken. (4.3)

Quality records shall
bemaintained to demonstrate

conformance to specified
requirements and the

effective operation of the
quality system (6.3.1). The

standard addresses records
held on electronic media

(6.3.2).

Conformity
revIew

To obtain assurance, prior to
the delivery of software

products submitted as part of a
certification application, that

the software life cycle
processes are complete,
software life cycle data are

complete, and the executable
object code is controlled and

can be regenerated.

Activities of the review
are detailed. (8.3)

The standard does not
provide specific guidance

on conformity review.

The standard does not
provide specific

guidance on
conformity review.

The standard does
not provide specific

guidance on
conformity revIew.

Before offering the product
for delivery and customer
acceptance, the supplier

should validate the operation
of the product (see

validation) in accordance with
its specified intended use,

when possible under
conditions similar to the
application environment.

(5.7.4)

Use of previous developed software

 Standards

Title Objective summary DO 178b IEC61508 MIL-STD-498 ISO/IEC 12207 ISO 9000-3

Use of
Previous

developed
software

To justify and control
the use of previous
developed software.

To assess the issues
associated with the

use of previously
developed software

including
modifications, change
of installation, change

of application
environment...

The intention to use
such software is stated
in the plan for software

aspects of requirements.
Traceability from product
and data of the previous
application to the new
application should be

ensured. In general, the
impact of any

modification should be
assessed against the

objectives of the
standard. (12.1)

The previous developed
software's suitability in satisfying
the requirements specification
shall be justified during safety

planning.(7 .4.2.11) A
modification of a validated

software shall be initiated only on
the issue of an authorised

modification request under the
procedures specified during

safety planning. Impact on the
system functional safety shall be

analysed, ensuring that the
software safety integrity level is

sustained. (7 .8)

The developer shall identify and
evaluate pre-existing developer

software products for use in
fulfilling the requirements of the
contract and being cost-effective.
The scope of the search and the

evaluation criteria shall be as
described in the development plan.
(4.2.3.1) Appendix B is a guidance

for interpreting MIL-STD-498 for
incorporation of reusable software
products (RSP). The RSP may be
used as-is or modified and may be

used to satisfy part or all the
requirements.

Modification
plans,

procedures and
reviews shall
be developed

and
documented.
The software

shall be
changed in
compliance

with the
development

process.

The supplier and
customer should agree

and document
procedures for

incorporating changes
in a software product

resulting from the need
to maintain

performance. A
guidance on these

procedures is provided.
(5.9.4) Maintenance
(problem Reports,

change procedures,
corrective action) is also
addressed in subclause

5.10.

Tool Qualification

 Standards

Title ObjectIve summary DO 178b IEC 61508

General
requirements

Tools should be qualified to ensure that
they provide confidence at least equivalent

to that of the processes eliminated,
reduced or automated.

A tool may be qualified only for use on a specific system.
The configuration management and quality assurance
processes should apply to tools to be qualified. Tools

should be qualified according to the type (development or
verification tools). (12.2)

If tools are used as part of design or
assessment for any overall, E/E/PES and

software safety lifecycle activity, they should
themselves be subject to the functional safety
assessment. The degree to which the use of

tools will need to be evaluated will depend upon
their impact on the functional safety of the

system. (8.2.5 in part I)

Qualification criteria
for development tools

Development tools can introduce errors,
therefore, stringent criteria shall be applied

to their qualification.

Qualification of a tool is needed when processes are
eliminated, reduced or automated by the use of a tool

without its output being verified. If a tool is to be qualified,
the tool should satisfy the same objectives as the software
it produces. The software level assigned to the tool should
be the same as that for the software it produces, unless
the applicant can justify a reduction in software level of

the tool to the certification authority. The applicant should
prove and verify that the tool complies with its tool

operational requirements. (12.2.1)

The standard only addresses programming
languages: the programming language selected

shall have a translator/compiler which has
either a certificate of validation to a recognised
national or international standard, or it shall be
assessed to establish its fitness for purpose.

(7.4.4.3)

Qualification criteria
for verification tools

The tool to be qualified should satisfy less
stringent criteria because a verification tool

The qualification criteria for software verification tools
should be achieved by demonstration that the tool

The standard only addresses verification tools
used during system validation: validation tools

for verification tools

stringent criteria because a verification tool
cannot introduce errors, but may fail to

detect them.

should be achieved by demonstration that the tool
complies with its tool operational requirements under

normal operational conditions. (12.2.2)

used during system validation: validation tools
shall be qualified according to a specification
traceable to a recognised standard. (7.7.2.7)

Qualification data The tool qualification process and data
shall be described in a document.

The data are the tool operational requirements (which
satisfy the same objectives as the software requirements
data and describe the tool operational functionality). For a

development tool, there are also a qualification plan
(which satisfies the same objectives as the plan for
software aspects of certification and describes the
qualification process) and a tool accomplishment

summary (which satisfies the same objectives as the
software accomplishment summary). (12.2.3)

No specific documentation is required for
qualification data.

Use of specific methods and techniques
 Standards

Title DO 178b IEC 61508

Use of specific
methods and
techniques

An alternative method (for example: formal methods,
exhaustive input testing, product service history.) is

not recommended and should satisfy the objectives of
the standard. The effort for obtaining certification

credit of an alternative method is dependent on the
software level and on its impact on the life cycle. The

applicant should justify the use of these methods.
(12.3) A guidance on method examples is provided.

(12.3.1 12.3.2 and 12.3.5) A specific verification
process should be implemented for multiple-version

dissimilar software. (12.3.3)

The standard requires/recommends the use of
specific techniques and methods at any stage of the
lifecycle commensurate with the SIL (see tables AI to
A 10 and 81 to 89). Among these required methods,

alternative methods such as formal methods are
recommended for specific lifecycle phases.

Software Certification
 Standards

Title Objective summary DO 178b IEC61508 MIL-STD-498 ISO/IEC 12207 ISO 9000.3

General
requirements

Legal recognition by the
certification authority that

the software complies with
the requirements

The certification authority considers the
software as a part of the system and
does not approve it as a stand-alone

product. (section 10)

The certification
process is not
covered by the

standard as such.

Independent verification
and validation (IV&V) is
not within the scope of
this standard. (3.23)

Acceptance (5.1.5) To
conform to the
standard, the

developer shall
implement all the life
cycle processes as

specified in the
contract. (1.4)

When the supplier
is ready to deliver

the validated
product, the

customer should
judge whether or
not the product is
acceptable. (5.8.1)

Certification
authority

This organisation carries
out the certification process.

The certification authority is an
organisation or person responsible
within the state or country concerned

with the certification of compliancewith
the requirements. (Glossary)

The developer shall
interface with the IV&V

agent(s) as specified in
the contract. (5.19.5)

Acceptance tests
should be

performed by the
customer or may
be performed on

behalf of the
customer by the

supplier or a third
party. (5.8.1)

Certification
Planning

To establish communication
and understanding between

the applicant and the
certification authority

throughout the software life
cycle to assist the

certification process

The process is applied as defined by the
planning process and the plan for
software aspects of certification.

(section 9) Certification activities and
the independence of those performing
them are graded against software level

(see table A 10 in annex A).

Anyhow the
functional safety

assessment (FSA)
may be considered
as a mean of co-

ordination with the
certification authority

.

The developer shall use
software management

indicators to aid in
managing the

development process
and communicating its
status to the acquirer.

(See Appendix F)
(5.19.2)

The acquirer prepares
the acceptance

process and specifies
the participation of the
supplier (developer).
Acceptance criteria

shall be established.
(5.1.5.1)

The supplier
should assist the

customer to
establish the

acceptance test
activities. (5.8.2)

Data
Submitted to

The
certification

authority

To obtain agreement with
the certification authority on

this plan

To submit the plan and other requested
data to the certification authority for
review at a point in time when the
effects of changes are minimal, to

resolve issues identified by the
certification authority. (9.1)

The developer shall
provide the acquirer

access to developer and
subcontractor facilities,
including the software
engineering and test

environments.

The standard does not
address the data
submitted to the

certification authority .

The standard does
Not address the
data submitted to
the certification

authority.

Certification
process

To provide evidence that
the life cycle processes

satisfy the plans

To arrange review of the life cycle
processes, to submit the software

accomplishment summary, the
configuration index and other requested

data, to resolve issues raised by the
certification authority as a result of its

reviews. (9.2)

The standard does not
address the certification

activities.

The acquirer performs
acceptance tests and
reviews (5.1.5.2) with

the help of the
developer (5.3.13).

The supplier
should carry out

acceptance tests.
(5.8.2)

